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Kinematics of Deformation

e Kinematics is the branch of
mechanics which deals with the
motion without reference to
force or mass

* Displacement is any change in
the configuration of the body X

4

e Displacement vector of a point
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Kinematics of Deformation

e Kinematics is the branch of
mechanics which deals with the
motion without reference to
force or mass

¢ Displacement is any change in

the configuration of the body X -

* Displacement vector of a point

w(X,y,Z,t)

!
U u(x,y,z,t) i
{:’} ={ v(x,y,zt) } , t=time [/] v—>Y
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Displacement Vector

at a Point
Displacement is associated
with two phenomena: (CDSED
- Rigid body motion Translation
- Translation
- Rotation |

- Deformation

- Change in the distance
between material points
and/or shape of body

- Measured by strain vector .
(or strain components) at

a point I
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Displacement Vector
at a Point
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Displacement Vector
at a Point

Translation
[ animation |
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Deformation of a Deformable

Body

Consider an elemental volume at a point, with
extent dx, dy, dz in the x, y, z coordinate direction.

Deformation of the elemental volume consists of:

e Linear (or extensional) strains - measuring
the change in the linear dimensions

e Shearing strains -

measuring the
change in the ;
anglgs between Linear strains
the sides X
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Shearing strains




Shearing strains

f

Deformation of a Deformable

Body

Deformation of the elemental volume consists of:

» Linear (or extensional) strains - measuring

the change in the linear dimensions

* Shearing strains - measuring the change in the
angles between the sides

e Curvature of
sides - usually
small and is
neglected
in a first
approximation

yz

Shearing strains




Strain-Displacement ReEIationships

* Consider the projections of the
elemental volume (at a point)
on the coordinate planes

e The projections of the two
lines AB, AC on the xy plane is
A;B;, A C,where A;B;= dx,
A1C=dy




Strain-Displacement ReEIationsSnips

If the displacements of point A, in the x .,y
directions are u ,v
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Strain-Displacement ReEIationsSnips

If the displacements of point A, in the x .,y
directions are u ,v

The displacements of
points By and C,; can
be approximated by

[u+%dx, v+%dx],

and

y .
-
s T //’Tﬁ'yx T
dyfFv V+g—" dx
== 1
F— dX—
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u+ Y dx




Strain-Displacement ReEIationsSnips

The linear (extensional) strain in the x direction

change in the projected length
(on the x—axis) of element dx

original length

ou
_ u+ﬁdx -u
dx )
\_I V+-3—¥dy
1
— du
[ +]

The linear (extensional) strain in the x direction

€y

change in the projected length
(on the x-axis) of element dx :l

original length

oLt

Analogously, linear strains in y and z directions
are given by:
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Strain-Displacement ReEIationsSnips

The shearing strain in the plane x-y is defined as
the change in the angle between AB and AC

-ny = shearing strain in the plane xy

e v

Uxy * Syx
For small displacement
gradients and small
strains

Oy =~ tan o, [+]

u+ 2U dy
o

=v+g"idx -V

dx-i-g%dx

The shearing strain in the plane x-y is defined as
the change in the angle between AB and AC

'ny — shearing strain in the plane xy
= Olyy * Olyy Y
For small displacement
gradients and small ¥
_ strains w% dy
'- = a_ = d
OX F— dX—>




Strain-Displacement ReEIationsSnips

The shearing strain in the plane x-y is defined as
the change in the angle between AB and AC

-ny — shearing strain in the plane xy

Xy yX
For small displacement

gradients and small
__ strains

= Ol * CL us 24 dy

~ v
~ OX

Analogously
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From which
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Strain-Displacement ReEIationsSnips

Analogously, the shearing u+ 2U dy
strains in the planes yz and ——s
| zx are given by:

— OV . OW
Y=oz * oy
= OW 4 dU
'~ ox ¥ oz

Ve Y
N\

Sign Convention

1 z £y
:adxdx <dysi e’ ‘
A i
! y i

Linaaf strains

o -

Shearing strains

¢ Linear (extensional) strains are positive if tensile

e Shearing strains are positive when they decrease
the angle between the sides




a Linear strains
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Strain-Displacement ReEIationsSnips

Matrix Form of Strain-Displacement Relationships

Llnear strains

prapay

] Shearing strains

t
{8} = |E 8y8

Strain vector = {8}

Strain-Displacement Relationsnips

Notes

* Strains are defined at a point - an infinitesimal
volume element

¢ Linear (extensional) strains are associated with:
¢ Change in the volume of the element

e Change in the

shape (or form) IRTS A w B
of the element ; 1. oY
(elemental cube

is transformed Lineal strafns

into a
rectangular
parallelopiped)

nearln strains




Strain-Displacement ReElationsSnips

* Linear (extensional) strains are associated with:
¢ Change in the volume of the element

e Change in the shape (or form) of the element
(elemental cube is transformed into a
rectangular parallelopiped)

* Shearing
strains are
associated
with change 4 ¢
in the shape Linear strains

(or form) of "ty fee,,  Jim:
the element ; o :
ar e 5 Yyz

Shearing strains

Analysis of Strain

* The transformation of strain components
(associated with coordinate transformations),
the determination of principal strains, principal
directions, maximum shearing strains and
octahedral strains follow similar procedures to
those used for stresses.

* The equations *‘x"}
for stresses can
be used for
strains if the Linear strains

following Vxy ] i
i ;

substitutions
Shearing strains

are made:




Analysis of Strain

e The equations for stresses can be used for
strains if the following substitutions are made:

Ex > Oyx Ey > Oy £, 0,

1
21yz <7 Tyz
1

5V zx €2 Tzx

|
> xy €7 Txy

Transformation of Strain
Components

T
lo'| = [T]|e] [ ]
where
1 1
Sy’ E'Yx'y' E’t’x’z'
1 Y H
S I -
2" x
Symm. 4"
82.




Transformation of Strain
Componenits

Transformation of Strain
Components

U my n,




Principal Strains and Principal

Directions

Solution of an algebraic eigenvalue problem

with P +m24+n2=1 )-y

> N

¢
1 e 1 =
2Txy &y % 3Vyz
n

1 1
Ex € 2Txy 2¥xz {
1 1
2Txz 2¥xz €z°%

Characteristic equation

—e3+dy82-Jye+dy=0
where JI=E T E FE,

Principal Strains and Principal

Directions
Jp= x 57“? + Ey ;T!'Z " €2 l?xz
%Txy &y 1 Tyz & ;sz Ex
Z
A
€x l Txy }TH
Ja=| dvxy & 3y
lez 1750'1 €2 ;Y




Principal Strains and Principal

Directions

Principal strains and principal directions

EIII 5
A
gl —)[t’l,ml,nl) el
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Principal Strains and Principal
Directions

Linear strains

Y . i
Yxz ¥
! Y ¥ y
X x x Ty

Shearing strains

Ty Txz o Yxy Yxz 1
Yxy Tyz | - Yy Y Yyz ]
2 ;‘v 2 SR e A £ 1°
Yo Tz Vxz Tyz = 0o o0 14
2 2 & 2 2 T3 3




Principal Strains and Principal

Directions
:,dn‘d: 1 -1’
A b &i
E ...... r
) Linear strains
" Y
. y

x
z z
Txz
Y y
x X Tz

Shearing strains

where J, = first strain invariant
:| =gX+Ey +€2

A plane strain state, parallel to x-y, is said to exist if:

Ez=7xz=7yz=0
| & 3Ty O
|a|= !YXV &y 0
0 0 0




Plane Strain

Principal strains

{z:l}=l'[a,+sy]i; \/(ax_sy)z‘*ﬁy

Y
tanZB:Yi y A

Ex ~ &y

Maximum shearing strain




Plane Strain

Transformation of Strain Components

.
Eyr
By X
; Txy'
e __x
cos20 sin20 2sin0 cosO Ex
sin29 cos20) 2sin0 cos0 Eyr
—sinOcos® sinOcos® cos20-sin20 1 Tx'y’

Mohr's Circle Representation

of Plane Strain
Sign Convention

* Linear (extensional)
strain is positive
when tensile

* Shearing strain

* if ¥y, is positive then

o 1

> Ixy with € is counterclockwise,
taken as negative

1 ’ - - e
* 2 Ixywithgy is clockwise, taken as positive




Mohr's Circle Re
of Plane

resentation

train

Mohr's Circle Rep

of Plane

resentation
train




Strain Measurements

* Experimental Methods include:
b

- Electrical resistance (bonded) strain gages

- measure extensional strains (extension /
contraction) of lines on the surface of a
member

Strain Measurements

* Experimental Methods include:
b

- It is customary to cluster three gages (strain
rosettes)

- Delta rosette (with gages spaced at 60°
angles)




Strain Measurements

* Experimental Methods include:
b

- It Is customary to cluster three gages (strain
rosettes)
- Rectangular rosette (with gages spaced
at 45° angles)

Strain Measurements

b b

- | . 45 45
| | % %
L p o

X

—

e Photoelastic methods
e Holographic

e Moire'

Speckle interferometry techniques




Strain Measurements

Strain Rosettes

€, 1 0 0
= cos20 sin0 sinf cos0 &y
cos220 sin20  sin20 cos20 Txy

Ex

If £5.€p and €¢ are known, then £y, €y, Vxy
can be found.

y ¥

v d

Strain Compatibility
Relations

Strain-displacement relations have six strain
components (Ex, €y, €z Yyz, Yzx, Yxy) and three
displacement components (u, v, w).

Linear strains

" Yy ; !
TI.’. "?
: Y ¥ 5y
O X % Iyz

Shearing strains




Strain Compatibility

Relations

The three displacement components cannot be
determined by integrating the six strain displace-
ment relations. Certain relations among the
strain components must exist in order to obtain
the three displacement components.

X £y dy z
oyt ¥ =
E rnrasund r f‘" y
x
Linear strains
z
‘fl"’
¥
x X

Shearing strains

X
T
Txz
 §

Strain Compatibility
Relations

For a plane strain case parallel to the x-y plane

Ex % ' u+ 2U gy

s | & | —
xy {%g‘

Shearing strains

028,(= u
&% xoy?
ey P
Ox%  Ox2 oy




Strain Compatibility

Relations

Shearing strains

azg_x = _asu 1
N  Ox ayﬁ u+ :‘—“ dy
Ox Ox” Oy 'u'+-§_—; dy jx‘)}
A
az'ny_ &u v J‘T /- Tryx _f
X  oxdy?  x2 oy dlv i V4 2Y dx
_u, :
Therefore — dX—>1 -
e 523 P y _ u+f;—;’dx
2% o - 35 =0
u+ % dy
C
—Y
T C{_xy /

dy|Fv V+-2Y dx
[ 12 n
F— dX—
F—
u+ 2 dx




Strain Compatibility

Relations
' '722 az2 - 62‘: : .
z & I [ &
ot 2 5 ¢« “ax "
[ ] [ ] r..2 f-'2 72 ?
ayarz?z T2 Yoy ~doa e
. 52 ~ _1 “(-2 } (72 -; 6‘3 J’Z}(
JZOX cyox (-,jz @c'z \ YX}'
"2 r"2 82
. . af.:y -3% iy 3 L

* Under uniform temperature change T° _
elongationof bar= O TL

where O = coefficient of thermal L
expansion

e Thermal strain= OT ‘“; GH
but thermal stress =0
since there is no resistance
to the expansion i K

e For the case of combined 3 |
mechanical and thermal
strains

G=Ek—aT] )




0

> 7 le—t——>|

i

/17774

L| (/T

€

SL? mo'-»‘:xﬂ*- N




